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ABSTRACT
Content is at the heart of next-generation Internet architec-
tures such as Content-Centric Networking (CCN): Instead
of routing location-based messages to end hosts, the net-
work transmits location-independent, named content objects.
Such data objects can (and are envisioned to) be cached in
arbitrary network nodes. In this technical report, we discuss
several privacy attacks related to the ubiquitous presence
of caching in CCN: Attackers can monitor access to specific
content objects by other users connected to the same cache,
they can discover the names of objects stored in the cache,
and they can duplicate entire data flows from and to other
users of the cache. We identify the architectural features and
protocol functions that make these attacks possible, and we
recommend measures to mitigate cache-based attacks.

1. INTRODUCTION
A range of named data networking (NDN) architectures

have been proposed to address performance and security
issues of the current Internet architecture. Many propos-
als advocate addressing content instead of addressing end
hosts, enabling innovative routing strategies and providing
the potential for ubiquitous caching at the network layer.
However, with any new component or protocol feature that
an architecture proposal introduces, it potentially introduces
new security issues as well.

In this technical report, we discuss undesirable side effects
of ubiquitous caching with respect to privacy. Caching can
achieve reductions in upstream bandwidth and content re-
trieval delays. Yet, the performance increase comes at the
cost of a reduction in privacy due to caches keeping transient
communication traces.

Caches have been exploited for privacy attacks in other
contexts, e.g. DNS caches [13] and Web browser caches [9].
However, NDN architectures tend to exacerbate the privacy
risks of caches: Currently deployed caches, such as DNS
caches, Web caches and CDNs, are application-specific and
shared by a relatively large number of users. Many NDN
architectures, on the other hand, replace application-specific
caches with general-purpose network-layer caches. General-
purpose caches increase the attack surface for privacy attacks
by putting any communication at risk. Furthermore, such

caches can be part of any network node; they can potentially
be shared by fewer users. Fewer users sharing a cache in-
creases the information gained in privacy attacks because
there remains less uncertainty as to which user requested
certain information.

We introduce three privacy attacks based on caches: Re-
quest monitoring allows an attacker to track any access to a
given content object. Given prior information, an attacker
can use this technique to confirm a hypothesis about the
victim. The object discovery attack lets attackers gain an
overview of the data objects that are transiting through a
cache, and the flow cloning attack can be used to replicate
an entire data flow to another machine. Note that all these
attacks can be carried out by any legitimate user of a cache.
To the best of our knowledge, we are the first to describe the
latter two attacks; the former attack is novel at least in the
context of NDN architectures.

In the absence of a real-world deployment of a NDN net-
work with real user data, it is challenging to quantify the
severity of possible attacks. Several design and deployment
parameters have direct influence on the feasibility of attacks.
For instance, if the system is used to disseminate only static,
high-popularity content, the risk of privacy breaches is likely
to be low. Similarly, the supported protocol primitives, the
placement of caches and decisions about what to cache for
how long directly impact the scope and feasibility of attacks.

Although it may be too early to assess the real-world im-
pact of such attacks, it is time to identify what architectural
and operational choices enable these attacks and how coun-
termeasures could be designed. Therefore, the purpose of
this technical report is not so much to quantitatively analyse
the attacks; we leave this for future work. Rather, our goal is
to raise awareness for the consequences of ubiquitous caches
on user privacy.

In order to allow for a focussed discussion, we concentrate
on Content-Centric Networking (CCN) as a representative
of NDN architectures. In this technical report, we identify
three cache-based privacy attacks in CCN, and we design
minimally invasive countermeasures that allow users to mark
content as sensitive and prevent these attacks. While our
discussion focusses on CCN, we believe that the overall class
of attacks also applies to other NDN proposals that make
use of ubiquitous caching.
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2. BACKGROUND
A range of named data networking architectures have been

proposed; for a survey, see Choi et al. [7]. Content-Centric
Networking [12] is among the more recent approaches and
has already generated a body of follow-up work by various
research groups.

2.1 Content-Centric Networking
For the purpose of our discussion in this technical report,

CCN consists of the following main features:
Named content: Each chunk of data transmitted in the

network is identified by a globally unique name. Names
address content (including its hash), but not its location.
Names consist of one or more components similar to a URL,
but without any protocol, port, or host name specification.
Large objects of content may be split into smaller chunks,
each with an individual name, but a common prefix.

Pull-based communication model: CCN specifies two types
of network messages: Interest and Data messages. In order
to obtain a content object with a given name, a network
entity sends an Interest message. In response to an Interest,
the network delivers at most one Data message.

Prefix matching: Any Data message delivered must match
the preceding Interest. A Data message matches an Interest
if the name in the Interest is a prefix of (or identical to) the
name in the Data message.

Router functionality: Any router (or other network device)
may contain a cache for content objects. When an incoming
Interest is received, a router first checks whether a matching
object is cached locally. In case of a cache miss, the Interest
can be forwarded to adjacent routers. When forwarding
Interests, routers keep transient state to identify the interface
for backward forwarding of incoming Data responses.

Content security: Each content object carries its hash
value as part of its name in order to ensure data integrity.
Data authenticity is achieved by digitally signing content
objects. Confidentiality and access control are implemented
by encrypting content objects and distributing the keys.

2.2 Caches
With respect to caching, we should distinguish two different

kinds of policies: Caching policies and replacement policies.
A caching policy [14] reasons about whether an object

should be considered for caching. For instance, such a policy
could attempt to exclude objects that are unlikely to be
shared between users by not caching any interactive traffic.
A policy that coordinates caching decisions between different
caches in a topology to avoid overlap also falls into this
category. The default policy is to cache everything.

A replacement policy decides which object should be evicted
from the otherwise full cache to accommodate a new object.
Traditional policies are FIFO, LRU, LFU, or random policies
such as the ones discussed in [18]. As of version 0.6.0, the
cache in PARC’s CCNx prototype1 implements an approx-
imated FIFO policy that periodically eliminates the oldest
objects when the cache is above capacity.

3. ATTACK MODEL
The network setup that we consider in this technical report

is composed of an arbitrary topology of caches with a shared
gateway cache at the edge of the network. Such a gateway

1PARC CCNx, available at http://www.ccnx.org/.
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Figure 1: Attack model: The attacker is an unprivi-
leged user of the same cache as the victim.

cache may correspond to a DSLAM, for instance, and has
around 100− 1000 end users directly connected to it. This
cache is the users’ only active Internet access point, and users
do not share with each other any local caches that they might
have in their home networks. That is, all non-local requests
are routed through the gateway cache. In the following, we
will abstract from the rest of the network and consider only
this gateway cache.

We assume that the gateway cache works independently
(it does not explicitly cooperate with other caches located
upstream or downstream) and its caching policy allows it
to cache any type of data. As cache replacement policies,
we consider FIFO, LRU, and random replacement. Since
the replacement policy needs to operate at line speed, more
complex replacement policies or policies requiring more state
(such as LFU) may not be applicable [3, 18].

In our scenario, both the attacker Alice and the victim
Vroni are connected to the same gateway cache (see Figure 1).
Note that Alice is a regular user of the cache. Attacks that
require privileged administrative access to infrastructure,
such as backbone network cables and routers, are out of the
scope of this technical report.

4. REQUEST MONITORING ATTACK
The request monitoring attack leverages caches to monitor

access to predefined objects. The attack is based on two
main assumptions: (1) Vroni requests a low-popularity and
privacy-sensitive object O at time to.2 This results in a
cached copy of O, and (2) Alice can find out that O is cached.
The goal of the attack is for Alice to find out if, when and
how often there is an access to O through the cache.

As in other privacy attacks [4], low-popularity objects
imply a higher privacy risk, and some auxiliary information
is needed to carry out the attack: Alice uses prior knowledge
about Vroni to define the name of an object O (or a list of
objects) that Vroni might request. If Alice detects an access
to O, the low popularity of O implies a high probability that
the request was made by Vroni and not by another user of
the cache.

For example, Alice might already know that Vroni is the
only person in the neighbourhood who speaks Russian, but
Alice does not know Vroni’s political convictions. Alice can
compile a list of objects found on Russian web sites and
classify them according to the political spectrum. Every
time Alice observes a local access to these objects, she can
reasonably assume that Vroni requested the object. By

2Note that we assume only a single access to O. While in
theory, object access could be modelled as a frequency fo,
our single access assumption acknowledges the fact that fo
might be very low in practice, such as one request per day
or per week.
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Figure 2: Noninvasive cache probing: The attacker
checks the cache with frequency fp (downward ar-
rows). The victim accesses object O at time to; the
area filled in grey denotes the time during which O
is cached. The attacker detects O at th.

comparing with her list of classified objects, Alice can infer
Vronis political preferences.

In another scenario, Alice knows that Vroni is the neigh-
bourhood’s only customer of a given bank. By continuously
monitoring access to an object found on the bank’s web
site, Alice can detect when Vroni does online banking. Alice
can use this information for social engineering attacks. For
instance, Alice might call Vroni while she is logged into her
online banking account to tell her that the bank detected
a security problem when Vroni logged in, and that Vroni
should reveal her password so that the problem can be fixed.

Alternatively, Alice might know that in the neighbourhood,
Vroni is the only player of a certain online role-playing game.
If Alice detects that Vroni accesses the game very frequently,
she might conclude that Vroni has an addiction problem.

In this section, we assume that Alice has already used
prior knowledge to select O. In Section 5, we describe an
attack that allows Alice to discover what types of objects
are transiting through her cache, which is useful if she has
less knowledge about its user population.

4.1 Non-Invasive Cache Probing
In order to explain the principles and requirements of

cache probing, we initially make the simplifying assumption
of non-invasive probing. That is, Alice can send a request to
the cache and find out whether an object is cached without
modifying the state of the cache.

To find out when a user of the cache requests O, Alice sends
periodic requests, so-called probes, to the cache and records
whether O was found in the cache (as shown in Figure 2).
To carry out the attack, Alice needs to know how often to
send probes, the probing frequency fp.

If Alice knows that O remains cached for at least tc time
units after being requested by a user, tc implies a lower
bound on the probing frequency fp ≥ 1/tc to achieve a 100 %
detection rate. In this case, Alice detects an access within
one probing cycle. That is, if a cache hit has been detected
at time th, Alice concludes that the actual access time to
was at most 1/fp earlier.

Whether there is a lower bound on the cache time tc de-
pends on the replacement policy of the cache. LRU has such
a lower bound, the characteristic time [5]: Under stationary
object popularity distribution and constant incoming request
rate, each object remains in the cache for approximately
the same time after the last cache hit. In fact, LRU can be
modelled as a FIFO queue where a cached object is removed
and reinserted at each cache hit. The characteristic time is
simply the time it takes for an object to propagate from the
tail to the head of the list, given there are no hits to the
object. We extend the definition of the characteristic time
to FIFO and random replacement policies: Both policies

are insensitive to cache hits; their characteristic time is the
expected lifetime of an object in the cache.

Alice can measure tc by artificially inserting an object into
the cache and observing for how long it remains cached (see
Figure 3(a) and Algorithm 1): She selects a “fresh” object
that is currently not cached and that no one but her will
request, and inserts the object into the cache. Alice then
repeatedly queries the cache to find out whether the object
is still cached and updates the estimated values for the
lower and upper bound of the cache’s characteristic time
accordingly. For the measurement, the request frequency
fm depends on the desired precision of the estimation, and
on Alice’s (approximate) prior knowledge of the order of
magnitude of tc. If Alice has no prior knowledge of the order
of magnitude of tc, she can start with, say, one request every
ten seconds and adjust the frequency if the estimated bounds
of tc are not satisfactory.

Algorithm 1 Measurement of tc (Non-Invasive)

1: o = /exclusive/unused/object . object name
2: request with insert(o) . insert object into cache
3: ti = current timestamp() . insertion time
4: tc,l = 0 . lower bound on tc
5: tc,u =∞ . upper bound on tc

6: loop
7: if request from cache(o) == CACHE HIT then
8: tc,l = current timestamp()− ti
9: sleep for 1/fm seconds

10: else
11: tc,u = current timestamp()− ti
12: break
13: end if
14: end loop
15: return [tc,l; tc,u]

In practice, tc is a probabilistic value, and it evolves over
time as the object popularity and request rate vary. To
accommodate this, Alice can repeat her measurement period-
ically and possibly scale down tc,l (or scale up tc,u) so that
the probability of an object being evicted from the cache
before tc,l (or after tc,u) is negligible. Even if the cache’s
replacement policy has no clearly defined tc, Alice can choose
lower and upper bounds that are “safe” for most cases (at
the cost of higher fp).

To estimate a lower bound for the characteristic time in
the worst case, assume that a LRU or FIFO cache has a
capacity of Nc objects and receives aggregate requests for
Nr objects per second, but all without any cache hit. In
this case, the performance of LRU degrades to FIFO and
the characteristic time is tc = Nc/Nr seconds. (If there
are cache hits, the characteristic time of a LRU cache will
be higher than this lower bound because the cache’s object
eviction rate decreases.) For instance, for a cache size of
1 GB and an incoming upstream bandwidth of 100 Mbit/s, the

characteristic time is at least 1·230·8
100·106 s ≈ 85.9 s. Consequently,

the minimum probing frequency fp ≈ 0.012 Hz is reasonably
low and the attack is feasible.

Non-invasive cache probing is possible only under certain
circumstances. In practice, Alice’s requests might modify
the state of the cache in two ways:

• In case of a cache miss, the Interest will be forwarded to
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(a) The attacker inserts an object at time
ti = 0, checks its availability with frequency
fm, and obtains the lower and upper bounds
tc,l and tc,u.

t
t =0i tc,l tc tc,u
(b) The attacker inserts three objects at time
ti = 0. In each iteration, she checks the
availability of a different object. The effects of
the invasive probing (cache lifetime extension
or insertion of the object, as in LRU) are
shown in the light grey shaded area.

Figure 3: Measuring the characteristic time tc for
(a) noninvasive and (b) invasive probing. For clarity
of presentation, we set ti = 0 in this figure.

other routers. If a Data response is received, the data
might be inserted into the cache. To avoid this, Alice
may use the scope field in CCN’s Interest messages to
prevent an Interest from being forwarded to another
router.

• In case of a cache hit, depending on the replacement
policy, the lifetime of the requested object in the cache
might be affected. While FIFO and random replace-
ment are insensitive to cache hits, LRU would (concep-
tually) reinsert the requested object into the queue and
thereby increase its lifetime in the cache by at least the
characteristic time.

Consequently, local scope with FIFO (as currently imple-
mented in the CCNx prototype) or random replacement allow
non-invasive cache probing, but LRU does not.

4.2 Invasive Cache Probing
As alluded to above, the requirements for non-invasive

cache probing might not be satisfied in a real-world deploy-
ment of CCN. Therefore, we now assume that every cache
miss causes the object to be cached, and that the replace-
ment policy is either FIFO or LRU. In order to successfully
monitor access to objects, this scenario requires Alice to
solve three challenges: (1) Decide whether a Data response
received from the router corresponds to a cache hit or a cache
miss, (2) estimate tc, and (3) detect Vroni’s accesses to O
despite the possibility of a cache hit being due to Alice’s
own monitoring requests. In the following, we detail how
the algorithms introduced in the previous section can be
enhanced to fulfil these requirements.

4.2.1 Detect Cache Hit/Miss
If Alice cannot use the scope field in Interest messages, she

can detect cache hits by exploiting the timing side channel:

Since the shared cache is only one hop away, Alice can
reasonably assume that under comparable local network
congestion conditions, every response served by the cache is
always faster than data fetched from the upstream network.
Furthermore, the distance of only one hop means that the
response time distribution of the cache can be expected to
have low variance over short time windows. The same does
not hold for the latency of objects that are not cached: They
may be fetched from unknown locations in the upstream
network and have an unpredictable delay. Therefore, Alice’s
approach is to measure the local cache’s response time (or the
response time distribution) and to classify a Data response
as a cache hit if the response time is close enough to the
cache’s expected response time, or as a cache miss if the
response time is too high.

Algorithm 2 provides a simplified version of the procedure
that Alice can use to measure the local cache’s response
time tr for cache hits. Alice picks an arbitrary object o and
requests it to be sure that it is cached. She then requests
o a second time, knowing that it will be served from the
cache, and measures the response time tr. By repeating this
procedure, Alice can estimate the expectation and variance of
the response time distribution. Since local traffic conditions
may vary, Alice can keep measuring response times in regular
intervals and keep a moving average and variance estimation.
If the response time distribution was normally distributed
with an estimated mean µ̂ and variance σ̂, Alice could con-
clude that an object was not cached locally if tr > µ̂+ 2 · σ̂,
for instance. The accuracy of this approach depends on how
precise Alice’s estimates of the mean and variance are for
the instantaneous traffic conditions, and how large the delay
is between the local router and the location in the upstream
network from which a content object is served in case of
a cache miss. Therefore, if the local router’s queue length
varies quickly and if most cache misses are served by caches
located close by in the upstream network, Alice needs to
increase the measurement frequency, whereas in the opposite
case, she can measure the response times less frequently.

Algorithm 2 Measurement of tr (Invasive)

1: o = <arbitrary object name>

2: request(o) . insert object into cache (blocking call)
3: t = current timestamp()
4: request(o) . request object from cache (blocking call)
5: return current timestamp()− t

4.2.2 Measure Characteristic Time
For the measurement of the characteristic time in the inva-

sive case, Algorithm 1 still applies if the replacement policy
is FIFO because a cache hit does not extend the lifetime of
the object in the cache. The only required modification to
the algorithm is to use the procedures of Section 4.2.1 to
distinguish cache hits and misses.

If the replacement policy is LRU, a cache hit extends the
lifetime of the object in the cache and Algorithm 1 does not
converge. Therefore, every time a cache hit is detected, Alice
needs to assume that the object has been reinserted into the
cache, reset the time ti to the current time, and increase
the waiting time between iterations to 1/fm · j, where j is
the number of the current iteration. The drawback of this
approach is a potentially long delay until the measurement
terminates.
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Alternatively, Alice can parallelise the algorithm by ini-
tially inserting a large number of single-use objects (Fig-
ure 3(b) and Algorithm 3). In each iteration, she checks for
a cache hit/miss of a different object, which bypasses the
effects of her invasive requests. For simplicity, we assume
that Alice has access to a remote machine that can generate
and serve arbitrary objects under a name prefix that Alice
controls. Alternatively, Alice could compile a list of existing
objects that are very unlikely to be cached or requested.

Algorithm 3 Measurement of tc (Invasive, LRU)

1: N = MAX ITERATIONS
2: o(j) = /alice/generate/<j> . object name template
3: for j = 1; j ≤ N ; j = j + 1 do
4: request(o(j)) . insert object into cache
5: ti,j = current timestamp() . insertion time
6: end for
7: tc,l = 0 . lower bound on tc
8: tc,u =∞ . upper bound on tc

9: for j = 1; j ≤ N ; j = j + 1 do
10: if request(o(j)) == CACHE HIT then
11: tc,l = current timestamp()− ti,j
12: sleep for 1/fm seconds
13: else
14: tc,u = current timestamp()− ti,j
15: break
16: end if
17: end for
18: return [tc,l; tc,u]

4.2.3 Monitor Access to O

With invasive probing, every cache miss causes the re-
quested object to be cached, and in the case of LRU, a cache
hit extends the lifetime of the object in the cache. Conse-
quently, Alice must be careful not to measure state changes
that she caused herself and incorrectly attribute them to
Vroni. In order not to detect a cache hit caused by one of her
previous probes, Alice must choose fp < 1/tc. However, such
a probing frequency implies that a request made by Vroni
can go unnoticed if it happens shortly after Alice’s probe.

CCN splits large objects into smaller chunks (the default
chunk size is 4 KB). IfO is larger than 4 KB, Vroni will request
all the chunks at approximately the same time. Consequently,
Alice can parallelise her probing algorithm and use a different
chunk in each iteration. This trivially guarantees Alice that
she does not measure hits due to her own cache insertions.
Furthermore, a cache insertion caused by Alice vanishes
after at most tc,u time units if there is no request by Vroni.
Therefore, Alice knows that she can reuse a chunk for probing
in future iterations tc,u time units after each request.

To detect Vroni’s requests, Alice needs to make sure that
at least one probing chunk is not cached during each 1/fp
time interval. This implies that Alice needs m = dtc,u ·fpe+1
chunks to carry out the attack for a FIFO replacement policy.
For LRU, m − 1 chunks are sufficient because Alice can
detect lifetime extensions due to a cache hit by Vroni. Note
that in the parallelised case, fp ≥ 1/tc,l, where tc,l is Alice’s
estimation of a lower bound of tc, in order to achieve 100 %
detection precision. For instance, if the characteristic time
tc = 85.9 s measured with ±10 % error, tc,l = 77.3 s, tc,u =
94.5 s, fp = 0.013 Hz and m = 3 chunks.

t
thto

1/fp

Figure 4: Parallel invasive probing with LRU: The
attacker alternates probes between two chunks with
frequency fp (downward arrows). The victim ac-
cesses object O at time to and the attacker detects a
cache hit at time th. The area filled in grey denotes
the time during which a chunk is cached due to the
attacker’s probes; the shaded area is caching time
due to the victim’s request.

Figure 4 and Algorithm 4 illustrate this attack for LRU
using m−1 chunks: Alice uses the procedures of Sections 4.2.1
and 4.2.2 to detect cache hits and to obtain tc,l and tc,u; she
then uses these values to compute fp and m, and compiles a
list of chunks c(0), c(1), ..., c(m− 1) of the same object O.
For the actual probing, Alice cycles through the chunks. If
a cache hit is detected, Alice concludes that someone other
than herself requested O during the past 1/fp seconds.

Algorithm 4 Parallel Cache Probing (Invasive, LRU)

1: N = MAX ITERATIONS
2: c(j) = /object/chunk/<j> . chunk name template

3: for j = 1; j ≤ N ; j = j + 1 do
4: if request(c(j mod (m−1))) == CACHE HIT then
5: “someone requested O”
6: else
7: “no one requested O”
8: end if
9: sleep for 1/fp seconds

10: end for

For FIFO, Algorithm 4 can be used with m chunks instead
of m− 1. The probabilistic nature of a random replacement
policy can be handled by increasing fp. Other replacement
policies might incur a significant cost for the attack (in
terms of high fp and a large number of potentially single-use
chunks). However, Arianfar et al. [3] argue that only simple
policies such as FIFO, LRU and random replacement can be
implemented at router line speed.

4.3 Countermeasures
The cache monitoring attack is based on the assumption

that an attacker can predict the names of privacy sensitive
content objects and detect cache hits for these objects with
reasonable effort. From the fact that an object is cached,
the attacker concludes that a user of the cache has (recently)
requested the object.

Object names could be made unpredictable by using one-
time names, by tunnelling requests through a TOR-like sys-
tem such as Andana [8], for instance. However, generalised
use of such a solution would result in increased network
traffic because caching is ineffective while data is tunnelled,
and transmission delays would increase because the data is
typically not delivered on the shortest path.

In order to prevent the detection of cache hits, the scope
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field in Interest messages could be disabled, and the timing
side channel could be made more difficult to exploit by
serving each cached object with an artificial delay equal
to the delay observed when the object was fetched initially.
However, these measures would reduce the functionality of
CCN, increase delays, and would make attacks only more
difficult, but not impossible.

Other means to increase the cost of attacks would be to use
less predictable replacement policies or to place caches only at
higher aggregation levels where it is much more difficult for an
attacker to make inferences about an individual user. These
measures, too, involve a potential reduction of efficiency.

At first, the preceding arguments appear to suggest that
there is a trade-off between privacy and performance: Each
aforementioned countermeasure would achieve an increase
in privacy at the price of a performance loss such as in-
creased response times, lower network efficiency, or reduced
protocol functionality. Yet, all these countermeasures would
indifferently affect all traffic, independent of its privacy re-
quirements. A better way to implement countermeasures is
to target only privacy-sensitive traffic without restricting the
non-sensitive majority of the traffic.

Intuitively, privacy-sensitive objects must be (locally) un-
popular at the time of the request: As an object becomes
more popular, its “entropy” decreases in that revealing its
existence in a cache leaks less potentially compromising in-
formation. Furthermore, it might be difficult to attribute
a popular object to an individual user, given that several
users might potentially have expressed an interest in the
object. Therefore, countermeasures against privacy leaks
may focus on locally unpopular objects as a superset of the
privacy-sensitive objects.

From a performance point of view, it is usually undesirable
to cache (locally) unpopular objects because cache hits are
unlikely. Ideally, a caching policy should exclude locally
unpopular content from being cached. Such a policy would
improve both privacy and performance. However, designing
a caching policy that can give privacy guarantees (and ensure
that a sensitive, unpopular object is indeed never cached)
is a challenging task. For instance, an object requested 100
times by the same user might be privacy-sensitive, while it
is probably less sensitive if requested once by 100 different
users of the same cache. Furthermore, it must be difficult
for an attacker to establish a fake popularity for a privacy-
sensitive object: If an artificially generated popularity allows
the object to be cached, the attacker might still be able to
carry out the request monitoring attack.

Until such a caching policy is available, privacy-sensitive
content could be “flagged” to prevent it from being cached.
While such a flag could be set by the content publisher,
the potential privacy issues tend to arise on the receiver
side; therefore, it seems more adequate to leave this decision
to the receiver. End hosts could, for instance, selectively
route flagged Interests (and receive the corresponding data)
through a tunnel such as Andana.

An alternative approach that applies if end users trust
their ISP (and do not mind letting their ISP know what
content they consider sensitive) may be to optionally specify
a Nonce in Interest messages. A Nonce is a number chosen
by the user so that is not easily predictable by the attacker,
e.g. a random number with sufficient entropy. If set, routers
should use this Nonce to isolate Interests: Interests for the
same name, but with different Nonce are forwarded and

cached independently. Data requested with the Nonce field
set should be cached only for very short time periods or not
at all; a cache hit may occur only when the Nonce matches.34

This would allow a user to define for each object whether
it is considered privacy sensitive and should be retrieved
privately. All other objects achieve the usual performance.

The challenge for the latter two approaches is to educate
users about the need for privacy protection, and to provide
them with an easy-to-use and reliable mechanism to flag
Interests. Flagging too many Interests degrades network
performance, while flagging too few Interests might lead to
privacy attacks.

A more elaborate discussion of potential countermeasures
against request monitoring can be found in [16].

5. OBJECT DISCOVERY ATTACK
The previous attack allowed Alice to monitor access to an

object with good time precision, but required prior knowledge
of the name to be monitored. In this section, we describe an
attack that allows Alice to inspect the contents of a cache
and discover the cached objects.

Alice uses two specific features of CCN—prefix matching
and exclusion patterns in Interest messages. Prefix matching
allows Alice to discover a new object with a name that she
has not previously known. Exclusion patterns allow Alice
to force the cache to return an item that she has not yet
seen. Taken in combination, these two characteristics permit
Alice to recursively enumerate the contents of a cache: First,
Alice requests data for the prefix of the name subspace to
be explored, e.g. the root prefix /; the cache will reply with
an arbitrary data object that satisfies this constraint. In the
following iterations, Alice puts the name of the discovered
item on the exclusion list and sends the next request.

Algorithm 5 contains an implementation of this approach.
The procedure enumerate-level discovers all the name com-
ponents in the cache that are directly adjacent to the given
prefix. For instance, if the cache contains /my/first/object,
/my/second/object and /something/unrelated, then the
procedure call enumerate-level(/my/) will return the set
{first, second}. The procedure enumerate-subspace uses
this functionality to discover all objects in the name hierarchy
subtree defined by the prefix p.

The above algorithm operates on chunks. The algorithm
can be enhanced (using CCN’s naming conventions) to fetch
only one chunk per object. By operating on content objects
instead of chunks, the overhead could be reduced significantly.
However, Alice would still need to fully download one chunk
(4 KB plus headers) of each discovered data object. This
limits the speed at which she can send new requests. Further-
more, the contents of the cache evolve continuously as new
objects are inserted and old objects are evicted. Therefore,
it is unrealistic to obtain a consistent snapshot of a large

3Note that this use of the Nonce field is different from what
the CCNx specification envisions.
4This mechanism could be abused by attackers to fill up
router caches with many copies of the same object by re-
questing it under different Nonces. However, attackers can
also cache useless information or send large numbers of Inter-
ests to upstream caches by simply requesting objects having
different names. Therefore, this use of the Nonce field would
not increase CCN’s attack surface. Furthermore, processing
the Nonce could be restricted to routers close to end users
and be disabled deeper in the core network.
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Algorithm 5 Object Discovery

1: procedure enumerate-level(p) . name prefix p
2: . returns name components directly after prefix
3: assert p = /p0/p1/ . . . /pi/ . enumerate level i+ 1
4: E = ∅ . name component exclusion set
5: loop
6: r = request(p,E) . with prefix matching and
7: . name component exclusion at level i+ 1
8: if r.status == CACHE MISS then
9: return E

10: else
11: n = r.name . found object satisfying p and E
12: assert n = /n0/n1/ . . . /nj with j ≥ i
13: assert p0 = n0, p1 = n1, . . . , pi = ni

14: if j > i then
15: assert ∀e ∈ E : ni+1 6= e
16: E = E ∪ {ni+1}
17: else
18: return E . p is no prefix but full name
19: end if
20: end if
21: end loop
22: end procedure

23: procedure enumerate-subspace(p) . name prefix p
24: . returns subtree with object names and all prefixes
25: E = enumerate-level(p)
26: F = ∅ . full names in subspace
27: for all e ∈ E do
28: f = p/e/ . append last component to prefix
29: F = F ∪ {f}
30: F = F ∪ enumerate-subspace(f)
31: end for
32: return F
33: end procedure

cache. However, the attack can be used to quickly explore
smaller name subspaces by starting the algorithm with a
longer name prefix. For instance, instead of enumerating the
entire cache (p = /), Alice could restrict the enumeration
to the much smaller subspace p = /savings-bank/boston/.
Alternatively, Alice can use just the procedure enumerate-
level(p = /) at the root level to gain an overview of which
protocols and services are currently being used, and recur-
sively enumerate only those subspaces that look interesting
to her. The output of this step can be used to prepare a
more targeted attack such as the request monitoring attack.

A similar version of this “attack” is implemented in the tool
ccnls included in the CCNx distribution. We have verified in
the current version 0.6.0 of CCNx that prefix matching and
name exclusion lists are indeed enabled for in-memory caches
and not only for persistent content repositories.5 Because of
the privacy implications of this attack, the CCN primitives
used by the tool ccnls should be disabled in real-world
deployments: Prefix matching should be restricted to making
forwarding decisions, and not be applied when matching
cached objects (except for the last, implicit component of the
name, the content hash). Name exclusion lists in Interests

5This behaviour can be verified by requesting an object from
a repository, shutting down the repository, and using ccnpeek
with a prefix of the object’s name to fetch it from the cache.

should not be honoured by caches, or should be closely
monitored: The attack can potentially be detected because
the algorithm tends to generate long name exclusion lists.

6. DATA FLOW CLONING ATTACK
Some applications, such as Voice-over-CCN [11], exchange

interactive data flows on top of CCN. Since the objects of
the data flow are cached by default, Alice can attempt to
replicate and reconstruct the original data flow. Even if the
data itself is encrypted, side channels such as message sizes
and timing might leak information that can be exploited. For
instance, Wright et al. detected phrases in encrypted VoIP
calls [21] with varying packet sizes, and Chen et al. extracted
medical conditions, search terms and tax information from
HTTPS-protected Web browsing sessions [6].

The Voice-over-CCN prototype uses the naming scheme
/domain/user/call-id/rtp/sequence-number for the voice
data exchanged during a call. Once Alice knows the prefix of a
specific ongoing call instance, such as /tid/vroni/1234/rtp/
detected with an object discovery attack, she can predict the
names of future packets, request them in the same way as
Vroni, and obtains a copy of the Data object sequence.

If a flow’s content names (and sequence numbers) are en-
crypted following the scheme /routing-prefix/{encrypted},
Alice can use the object discovery attack to enumerate the
cached name subspace under /routing-prefix/ and request
a new object at least as fast as Vroni. While this technique al-
lows Alice to receive the Data objects in the same order (and
nearly at the same time) as Vroni, the absence of clear-text
sequence numbers means that Alice cannot detect out-of-
order transmissions. If the same routing prefix is shared by
several ongoing data flows to different users of the cache, it
will be very difficult (or impossible) for Alice to tell the flows
apart. Consequently, in addition to the countermeasures dis-
cussed in the previous sections, interactive data flows should
encrypt as much of the name as possible.

7. RELATED WORK
The request monitoring attack on CCN was inspired by

DNS snooping [10], a similar attack on DNS that probes
DNS resolvers for cached domain name mappings. This
attack was later refined [20, 1, 17] to infer the access rate
to domain names from the time during which a name is not
cached. Krishnan and Monrose [13] showed how to exploit
the DNS prefetching features of modern Web browsers. By
probing DNS caches, they can detect Web searches for a
given keyword with an accuracy of 85 %.

The scope of the CCN request monitoring attack is larger
than attacks based on DNS because the attack can potentially
affect any protocol on top of CCN, not just domain name
to IP address mappings. Furthermore, CCN caches can
be located in arbitrary network devices, meaning that in
practice a CCN cache might be shared by fewer users than
a DNS cache, and that attackers can extract more precise
information about individual users. Another difference to
DNS is that the entries in a DNS cache are rather small and
tend to be evicted due to expiry. In contrast, CCN caches
typically contain larger objects that are evicted due to cache
replacement, which makes it necessary to estimate the cache’s
characteristic time. Lastly, the DNS attacks all make use of
an iterative query mode similar to non-invasive probing in
CCN. In this technical report, we provide additional attack
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algorithms for request monitoring in the case where non-
invasive probing is disabled.

Felten and Schneider [9] showed how malicious Web sites
can probe client-side web browser caches to find out if the
user has visited another, unrelated web site. In contrast
to cache probing using DNS or CCN, this attack requires
interaction by the user (i.e., visiting the malicious web site).

In the context of CCN, initial security-related research was
concerned with content authenticity (and implicitly the pre-
vention of cache poisoning) by digitally signing the binding
between names and content [12, 19]. Further work considered
“privileged” adversaries such as governments or ISPs that
compromise their users’ privacy: Andana [8] is a TOR-like
onion routing service that can provide users with anonymity.
Arianfar et al. [2] described a mechanism against censorship
that provides users with plausible deniability. In this techni-
cal report, we consider a different type of adversary, that is,
an unprivileged user spying on her neighbours. This setting
allows for more “lightweight” solutions (see Section 4.3), of
which a system such as Andana can be a part.

8. CONCLUSION
In this technical report, we have described a range of high-

level attack concepts that exploit the ubiquitous caches in
CCN. While application-level caches have been exploited for
attacks in other systems, the scope of such attacks becomes
much larger when all traffic transits through network-level
caches in a named data networking architecture such as CCN.

Caches provide for lower latencies and reduce the required
upstream bandwidth, but they also keep transient commu-
nication traces that can be exploited for attacks. Arguably,
most privacy-sensitive objects have low (local) popularity
and should not be subject to caching in order to improve
the cache hit rate. Therefore, performance and privacy can
be improved by caching policies that exclude low-popularity
content. However, there are several challenges concerning the
secure implementation of this approach in practice. In the
meantime, a countermeasure against privacy attacks could
be to allow users to “flag” content that they deem sensitive
and to handle it separately from the other content.

Other attacks in the context of CCN (as well as an early
description of the attacks from this paper) can be found
in [15]; [16] contains more discussion about countermeasures
against the request monitoring attack.
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